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Ya. B. Zel'dovich has established [1] that in a continuous-flow re-
actor two ignition regimes are possible: forced ignition and auto-
ignition.

It is important to consider the special properties of the autoignition
regime associated with the hydromechanics of laminar flow and heat
transfer through the pipe wall, In [2, 3] it was shown that the effect
of heat of friction on heat transfer in long pipes is qualitative in char-
acter, Moreover, according to Schlichting [4], in certain cases the
temperature gradient for such flows due to the heat of friction may
reach 10~30°, which is comparable with the preexplosion tempera-
ture rise in the stationary theory of thermal explosion [5]. In this
connection it is clear that under certain conditions the heat of friction
may considerably reduce the explosion limit.

This paper is devoted to a study of the effect of heat of friction on
the explosion limit of a reacting fluid in a long cylindrical pipe, The
dynamic autoignition regime due to heat of friction is examined, In
particular, it is established thzft, other things being equal, by increas-
ing the pressure drop it is possible to obtain explosion of the reacting
system,

§1. The laminar steady-state flow of a viscous
incompressible fluid with temperature~dependent
viscosity in a semi-infinite circular pipe is described
[6, 7] by the system of equations of motion and con-
servation of energy. In our case it is necessary to
supplement the latter equation with a term charac-
terizing the heat due to the chemical reaction, so
that the system of equations takes the form

d | yvdwl _dp

wemE = (1.1)
. d ¢ dT L —E | p(T) _jdee
/\.WL\TW”,-Fqkorexp-[?——{— i r(W} =0. (1.2)

Here, w is the flow velocity, T the absolute tempera-
ture, dp/dz the pressure drop along the pipe, r the
present radius, A the thermal conductivity, J the me-
chanical equivalent of heat, ¢ the reaction energy per
unit volume, R the universal gas constant, E the acti-
vation energy, and kg the nreexponential factor,

The boundary conditions for system (1.1), (1.2)
have the form

df [ dr,—=y = 0, T (ry) = T,,

dw ] dr| o =0, w(ry) = Q. (1.3)

We assume that the viscosity depends on tempera-
ture in the following way [7]:

po= ., exp (£, /RT)

(4, = const, E, = const}. (1.4)

Eliminating w(r) from system (1.1), (1.2), using
the Filonov [7] approximation for u(T) and the
Frank-Kamenetskii approximation for the chemical
reaction rate, and reducing the equation obtained to

dimensionless form, we obtain
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Here, © is the dimensionless temperature, B is a dimensionless
parameter characterizing the intensiry of the mechanical heat sources
due to dissipation of the kinetic eneigy of the flow, § is the Frank-
Kamenetskii number [5], y = 1/ry is a dimensionless coordinate, b =
= Ey/E is a parameter characterizing the degree of dependence of the
mechanical heat sources on temperature, usually b < 1.

The boundary-value problem (1.5), (1.6) does not have a solution
at all values of 8, We will call the limiting value § = 8, at which a
real solution of the problem still exists, the explosion limit. The
quantity &, is proportional to roz; therefore the problem of determin-
ing this limit may be formulated as follows: for a given pipe wall
temperature and specified pressure drop along the pipe determine the
pipe radius corresponding to autoignition of the reacting mixture,

§2. Making the substitution u= 6 ~ 8,, where 8;=
= 6{(0), by successive integration of Eq. (1.5) we re-
duce boundary-value problem (1.5), (1.6) to the non-
linear Volterra integral equation
Y 3
u=—8m\ (27|t dv —
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If we substitute for u in the right sideof Eq.(2.1) a
value that we know to be too high, for example, y*=
= 0, we obviously obtain a function u;~(y) which on the
interval 0 < y =1 is smaller than u, the true solution
of Egs. (2.1). Substituting uy (y} into the right side of
(2.1), we obtain u, (y)>u(y). Obviously, u, (y)<0.
Substituting the second approximation us " for u in the
right side of (2.1), we obtain ug~ < u, but at the same
time u3~ > uy~, since u¥ < 0, Substituting the third ap-
proximation for u in (2.1), we obtain ust > u, but at
the same time uy+ < uy ¥, since u3™ > u;™, and so on,

Thus, we have obtained a sequence of upper func-
tions u0+ >u,*>.-.>uandasequence of lower functions
u;” <ug” <... <u. Since the sequence of upper [unc-
tions {us*} decreases and is bounded below by the true
solution u, it converges to u. The sequence of lower
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function {uz+} also converges to u, since it increases
and is bounded above by the true solution u.

Thus, the solution of Eq. (2.1) can be found with
any degree of accuracy, and in each step of the cal-
culations it is possible to determine the error of the
approximate solution, for which it is sufficient to
determine the difference uf— ug, . If this difference
is small at 0 <y = 1, then as the approximate value
of u it is possible to take u; or u., . The convergence
of the successive approximations can also be demon-
strated with the help of {8]. Having determined u; ; ~
=~ u, we satisfy the second of boundary conditions
(1.6). In this case we obtain an equation giving 0j as

a function of Hyj:

1
001' + Smi S zln .’lfeui_l(x) dx =+
0
3
+ Bd2e 513 In 2™ gz — 0. (2.2)

0

It turns out that 6i(6yi) is nonmonotonic, andatgy;=
= fpi* the quantity 6j has a maximum épx. Differentia-
ting (2.2) with respect to 6yj, provided that db;==dfy
we obtain the equation

1
du,
1 8m~Sx Ine(1+ _8”61) 4 g 1B b X
01

1
g ou
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System of equations (2.2), (2.3) determines the
quantities §jx and 6yj«, which represent approximations
of the maximum temperature rise and the explosion
limit.

The effectiveness of the method is apparent from
simple examples of the autoignition of reacting plates,
cylinders, and spheres, for which exact solutions are
known [5]. Thus, for the autoignition of a plate 8% =
= 0.74,00;%=1 and 8y4= 0. 90, gy = 1.22, whereas
the exact values [5] are 6,=0.88, 0gx=1.2.

§3, We will first consider the autoignition of a reacting mixture at
constant viscosity (b = 0), In accordance with [3, 4], this case is re-
alized for certain liquids, as well as for any gases provided that the
flow velocity is small as compared with the speed of sound.

For the autoignition of a reacting mixture in a tube it is convenient
to take as the zero-order approximation of the solution of (2, 1) the
function

ut=—2In(l + my?, (3.1)
which is the solution of (2. 1) at B = 0, This function can be found with
the help of [9]. Obviously, ugt > u, where u— is the solution of Eq.
(2.1). Substituting uj into the right-hand side of Eq, (2.1), we obtain
the first approximation

w = YpBdtyt — 210 (1 + my?) , (3.2)
which, obviously, is smaller than u. Substituting this expression into the

right side of (2. 1), we obtain the second approximation

§241 . — Bt
ugt = *B“jy —SmS zln—z—(i + max?)”2 exp fj—b de

0

3.3

known to be too high as compared with u,

Substituting (3,1) intosystem (2.2), (2.3), we obtainthe following
system of equations for determining 8y,and 6y, :

81, = 21n 2 4 4B exp (— 2001,), 81, = 8 exp (— Bo1,). 3.9

Solutions of system (3, 4) for a number of values of 8 are given in
the table:

B 0.04 0.1 1 10 100

Oqn 1.99503 1.9531 4.6775 4.0303 0.4784
By»  1.38878 1.4100 1.5622 2.0496 2.8167
Bou 1.99548 1.9578 1.7006 1.0581 0.4939

Boos  1.38884 1.4103 1.5628 2.0648 2.8752

Substituting (3.2) into system of equations (2.2), (2.3), weobtaina
system of equations for determining &,, and 6y,,. This system has
been solved by Newton's method [10], taking asthe first approximation
the corresponding values 8y¢ and 6y, , and evaluating the definite
integrals in the system of equations for determining &,,, 8;,, by Simp-
son's method for 20 ordinates [10] wsing the tables given in [11]. The
results of the calculations are presented in the table,

From the data presented above it is clear that the difference be-
tween the first and second approximations, while remaining quite
small, increases with B, which is perfectly legitimate since the zero-
order approximation is exact at B = 0. If we assume, by analogy with
the example of §2, that the first approximation of 6, and 6, gives
too low a value of these quantities, while the second approximation
8y, and 6y,, gives too high a value of §, and 6y, then the small
value of the differences 8,5, — 814, G426 — Bo1+ indicates that in prac-
tice the second approximation of &, and 8, may be regarded as the
exact value of those quantities, In order to establish whether 8,4, Oy
and 8,4, Oy, are respectively the lower and upper bounds of 6, and
054, we calculated 83, 6y, for B =100, For this purpose we substi-
tuted expression (3. 8) for u in system of equations (2.2), (2. 3). The
system of equations obtained gives &; and 8¢, . This system was solved
by Newton's method, and as the zero-order approximation we took
the quantities 8,, and Opy, for B = 100, The definite integrals in the
system of equations for determining 83¢ and 6y3. were evaluated by
Simpson's method for 20 ordinates, while the integrals with a variable
upper limit were determined by Melent'ev's method [10] for four or-
dinates with a step b = 0, 05, As a result of the calculation we found
834 = 0.4920, 6y3, = 2.8654, These values fall between the values of
814, Ogyy and 8y, Oy, and lie closer 1o the latter, as was to be ex-
pected,

§4, We will consider the autoignition of a reacting mixture at b =
=1/2. Selecting, as before, (3.1) as the zero-order approximation,
we obtain the analogous system of equations

001 — 21n (1 + mg) — 2867~ /2 %

=0, (4.1)

1
F gl M) de
0

1
2m; ¢ ln (1 + myz?) dx
1— 1+m - Bose ot 48R e "’S—Txl )
[

4168~ =% In (1 4+ my) =0 (4.2)

for the quantities 6,, and 6. This system of equations was solved by
Newton's method [10]. The definite integral in system (4. 1), (4.2) was

evaluated for m; = 1 using the tables given in [12], formy =1 — ¢,
where € < 1,
1
In(1 4 mpa?)de
—_— =
0
163
= 5 ~— 0.346573 8 — 0.(48287 &2 — 0,003797 €3 — (4.3)

Caleulations at 8 = 0,001, 0,01, 0.1, 1 yield &4 = 1.999290,
1.9929, 1,98, 1.62 and 6y = 1. 386487, 1.3881, 1,40, 1,44,

The evaluation of the second approximation involves considerable
computation; therefore we will check the accuracy of the quantities
8y, and Oy, for small B by means of the small parameter method, We
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write the solution of Eq, (2.1) for smmall B in the form
u=—2In({ + my? + Bus + B + .... (4. 4)

Substituting (4,4) into (2.1) and discarding small quantities of the
second order and above, we obtain an equation for u;, solving which
we find

31n (1 4 my?) .

= 52¢72% [ Y (9 — my?)

Zm (1 £ my?) - 2m?
y
_ 3—mp) S In (14 my?) dy} (4.5)
Tt (1 L my?) Y '
b

Satisfying (4, 4) with account for (4, 5) and the second of conditions
(1. 8), we obtain an equation giving 6 as a function of 6q:

9 m 3ln(l 1+ m)
m (14 m)2 2m?

90—21n(1+m)+362e’/290|:4

3(1—m) Sln(l—{—mxz)dxil 0.

T 2m2(1 4 m) z (4.6)

Differentiating (4. 5) with respect to 6 and noting that dé/d6e = 0,
we have

2m +§6_2 1/,9[’”2_40'”_21

T m T T m A
3(1+2m)In(l +m)
+ m2 (1 -+ m) +
3(3— 3m? + 4m) ( In (1 + ma?) dz (4.7
+ 7 =0

Equations (4 8) and (4,7) determine &, and 90* cotrect to terms
containing B? , so that at small B the quantities 8, and 0,,,, determined
from system of equations (4, 6) and (4.7), must be close to the exact
values, System of equations (4, 6), (4.7) was solved by Newton's meth-
od [10], For 8 =0,001, 0,01, 0.1 we obtained §, = 1. 995365, 1.9931,
1,94, 6, = 1.386500, 1,3883, 1.40, respectively. Comparing these
data with the data previously obtained by the method of successive
approximations, we see that &;, and 6, approximate &, and 8y from
below, and the error is not large.

From the tabulated data and the above calculations it follows that
the preexplosion temperature rise 0y, increased with B, while the ex-
plosion limit decreases, Physically, this is attributable to the fact that
the heat of friction causes a local increase in temperature near the
wall, which is greater, the greater B, as a result of which the flow of
heat from the central part of the pipe is reduced more strongly, the
greater B,

Comparing the tabulated data and the data of the above calcula-
tions, we see that the values of §, and 8y, for b # 0 are lower than the
corresponding values of &, and 8y, for b = 0, This is attributable to the
fact that the amount of heat derived from mechanical heat sources is
greater at b # 0 than at b = 0, while the decrease in Og,at b # 0 is
attributable to the fact that the temperature due to mechanical heat
sources rises more uniformly at b = 0 than at b = 0, as a result of
which the flow of heat from the central part of the pipe increases. In
view of the symmery conditions, the temperature maximum isreached
at y = 0 in both cases,

§5. We will estimate the effect of the heat of fric-
tion on the autoignition of a reacting fluid for Newton-
ian heat transfer through the pipe wall. For this
purpose we will consider the thermal explosion of a
reacting fluid initially at rest in an infinite cylindrical
pipe and then suddenly brought into motion. This prob-
lem is an example of dynamic autoignition, different
from the examples examined in [13-14]. Mathe-
matically the problem reduces to the solution of the
system of equations

ow v 0 ( ow \ 1 dp
F T e\ )T 5 ds 6.1)
or __ » 0
e G- = = o (P S) + ghoexpr- (S5} (5.2)

with boundary and initial conditions

ow oT
b =0 witir) =0, | =0,
T, r)="To, T, r)=T,, w(0,r)=10. (5.3)

Here, t is time, Cp the specific heat at constant pres-
sure, p density, and v the kinematic viscosity.

For simplicity we assume that the viscosity and the
thermophysical coefficients are constant.

An exact solution of Eq. (5.1) with conditions (5. 3)
has been obtained by Gromeko [6] in the form of a
series in Bessel functions. To simplify the subsequent
analysis, we will use the method of integral relations
[15] to find a simple approximate solution of Eqs.

(5. 1) with conditions (5.3):

oot (1 np(- B (122

To derive (5.4), the profile w = wy(t) (1 — r*/rs) is
substituted into Eq. (5.1), the result of the substitution
is integrated with respect to r from 0 to r; and the
first-order differential equation for wy(t) thus obtained
is solved with the zero condition. A comparisonof (5.4)
with the exact solution showed that the error of (5.4)
does not exceed 12%.

Substituting (5.4) into (5.2) and reducingthe result of the
substitution to dimensionless form, we have the equation

(5.4)

a0 7} a6
Vg =3y (U gy ) duet B8 (1 —enery?
At
(T = mr) (5. 5)

with boundary and initial conditions

20

—a—y——|y=° - 0’ <%.?l_ + BB) ly:l = 0’ 9(01 y) = O
(B:i;?‘» P=V—iﬁ-’)v (5.6)

Here, P is the Prandtl number and « the heat trans-
fer coefficient.

We employ the method of integral relations [14,15]
to solve boundary-value problem (5.5), (5.6). We as-
sume that the temperature profile [14] has the form

f=g)—2ln(1+ay?)
(g=2In(1 +a)+4a/B(1+a). (5.7

Substituting (5. 7) into (5.5) and integrating the result
of the substitution with respect to y from 0to 1, we
obtain the Cauchy problem for determining a(7):

% = [Ba2 (4 a) {8 (1 4 a) [264/ B0 1

+ B«S(i—e‘s‘”)zl—iﬁa)] [ “@ 2+ B 49—

-1
——B(1—}—a)2[a—ln(1+a)]}] , a{0)=0. (5.8)
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If a(1) —~~as T—Ty<%,i,e., if the solution of the
Cauchy problem (5.8) has finite determination time [16],
then the reacting system will explode, and in this case
the quantity 7;is the induction period. Taking 7 as the
function, and @ as the independent variable, we easily find
that an explosion will occur if as a = « we have
T(a)— Ty <, i.e., in this case the problem of thermal
explosion reduces to the Lagrange stability [16] for
7= T1(a).

We will show that for any 8 there exists an explo-
sion limit 6 = §,. The function at (1) given by the equa-
tion

da*
dv

= [Bett+ a8+
X{B8 +2exp[4at ) B+ aP)]} — 16a+}] X

=1
Xl:é{aﬂ [24+ B+ a")]—B(1+atp[at —In(1+ a*)]}] (5.9)

with initial condition (5. 8) majorizes a = «(1). The
solution of the Cauchy problem (5.8), (5.9) for 6 =64
and 17— takes finite stationary values, and at 6 > 6,
there is a steady increase in the quantity at with in-
crease in 7, so that lim a*(r) = » as 71— 1.

It is easy to see that the limiting value of § = 6%,
at which the stationary value of atis reached, and the
corresponding value a, are determined by the system
of equations

B B
[ .

4+B(1+a) (L+afPld+B(1+a)

—8a a
XeXP—p e J'_‘ T1a ’
Py 8B —4a

S TFanIBaF P ays  (0-10

As B— = system (5.10) reduces to the single equa-
tion

8 =2(1— Y, P& (5.11)

whose solution

8y =2{1 =P 1L —YP (U —YB)P}, (5.12)
which we found by an iterative method [10] , satisfac-
torily coincides with the tabulated data at 0 < 8 = 1.
When 8 > 1 we have ay> 1 and 6,~ ~ 4/(8)1/2.

Using a small parameter method [10], for small values of B we
found

3B 48

6*':?[1—T<'1+3?)]' (5.183)

Since a < a¥, it is clear that when § = 6§, and T—>  the quantity
a— const < «, At the same time, in the absence of friction (B = 0)
a stationary temperature distribution exists at & = §,, where

8a, —4a
P * . %
 TT a2 P B Fay

s (V)

Expression (5. 14) is easily obtained from system (5, 10) and coin-~
cides with the corresponding exact value of the explosion limit [17].

8

(5.14)

Thus, in the case considered when B # 0 an explosion limit always
exists and lies in the range 8, = §, = 8%,

It is interesting to note that if a dynamic autoignition regime is
achieved by raising the external temperature, assuming [14] that as
T=> Ty < Ty it increases smoothly from 0 to 6y, then, as distinct
from the case considered, at 8¢, > 2 In 2 there will be an unstable
temperature distribution and an explosion will follow the least per-
urbation at any value of § > 0,

REFERENCES

1. Ya. B. Zel'dovich and Yu, A, Zysin, "Heat re-
lease rate theory. Exothermic reactions in a stream,®
ZhTF, no. 6, 1941,

2. S. A. Kaganov, "Steady-state laminar flow of an
incompressible fluid in a circular cylindrical tubewith
allowance for the heat of friction and the temperature
dependence of viscosity,* PMTF, no, 3, 1962,

3. L. I. Kudryashev and V. M. Golovin, "Effect
of dissipation of mechanical energy on heat transfer
in a laminar flow in a circular cylindrical tube," col-
lection: Heat and Mass Transfer, Vol. 5 [in Russian],
Izd. AN BSSR, 1963,

4. H. Schlichting, Boundary Layer Theory [Rus-
sian translation], IL, 1956.

5. D. A. Frank-Kamenetskii, Diffusion and Heat
Transfer in Chemical Kinetics [in Russian], Izd-vo
AN SSSR, 1947,

6. S. M. Targ, Basic Problems of Laminar Flow
Theory [in Russian], Gostekhizdat, 1951.

7. 8. K. Aslanov, "Flow of a variable-viscosity
liquid in a circular pipe,® Izv. VUZ. Neft i gaz, no.
12, 1961,

8. F. Tricomi, Integral Equations [Russian trans-
lation], IL, 1960.

9. D. A, Frank-Kamenetskii, ®Analytic solution of
thermal explosion in a cylindrical vessel,® ZhFKh,
no. 5, 1958.

10. P. V. Melent'ev, Approximate Calculations
[in Russian], Fizmatgiz, 1962.

11. G. Vega, Seven Place Logarithmic Tables
[Russian translation], Geodezizdat, 1954,

12. I. 8. Gradshtein and I. M. Ryzhik, Tables of
Integrals, Sums, Series, and Products [in Russian],
Fizmatgiz, 1963.

13. A. G. Merzhanov, "Quasi-stationary theory of
thermal explosion,” DAN SSSR, vol. 140, no. 3, 1961.

14. A. M. Grishin, "Use of the method of integral
relations to solve problems in ignition theory, " IFZh
[Journal of Engineering Physics|, vol. 10, no. 5, 1966.

15. 0. M. Belotserkovskii and P. I. Chushkin,
"The numerical method of integral relations,® Zh, vych,
matem. i matem. fiz., no. 5, 1962,

16. J. La Salle and S. Lefschetz, Stability by Lya-
punov's Direct Method [Russian translation], Izd.
Mir, 1964.

17. V. V. Barzykin and A. G. Merzhanov,"A
boundary value problem in the theory of thermal ex-
plosion, " DAN SSSR, vol. 120, no. 5, 1958,

4 QOctober 1966 Saratov



